PAPER: Electrochemical properties of mixed self-assembled monolayers on gold electrodes containing mercaptooctylhydroquinone and alkylthiols

Larsen, A. G.; Gothelf, K. V.

Langmuir 2005, 21, 1015–1021, doi: 10.1021/la048221w

Center for Catalysis and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Langelandsgade 140, Aarhus University, 8000 Aarhus C, Denmark.


Mixed self-assembled monolayers of 2-(mercaptooctyl)hydroquinone (QH2) and alkylthiols were formed on gold electrodes in EtOH and the redox process of the hydroquinone moiety of QH2 was characterized by cyclic voltammetry (CV) in 0.1 M H(2)SO(4). The monolayers were formed at a series of QH2:alkylthiol ratios and the QH2:alkylthiol ratio in solution was compared to the electrochemical response from QH2 in the obtained monolayer. Mixed monolayers of QH2 with hexylthiol, dodecylthiol, and octadecylthiol were studied. The length of the alkylthiol is crucial for the electrochemical response from QH2 in the monolayer. The total concentration of thiols during monolayer formation and incubation times were also studied and low concentrations of < 2.5 mM and long incubation times gave rise to lower peak separation, lower peak half widths in the CVs of the mixed monolayers, and lower background current. The stability of a pure QH2 monolayer and a 1:4 QH2:hexylthiol monolayer toward high potentials of up to 1.5 V versus Ag/AgCl was also studied and it was observed that the mixed monolayer is significantly more stable than the pure QH2 monolayer.

%d bloggers like this: