Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors

Fu Y, Zeng D, Chao J, Jin Y, Zhang Z, Liu H, Li D, Ma H, Huang Q, Gothelf KV, Fan C.

J Am Chem Soc. 2013 Jan 16;135(2):696-702. doi: 10.1021/ja3076692. Epub 2012 Dec 28.

Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.

Abstract

Self-assembled DNA origami nanostructures have shown great promise for bottom-up construction of complex objects with nanoscale addressability. Here we show that DNA origami-based 1D nanoribbons and nanotubes are one-pot assembled with controllable sizes and nanoscale addressability with high speed (within only 10-20 min), exhibiting extraordinarily high cooperativity that is often observed in assembly of natural molecular machines in cells (e.g. ribosome). By exploiting the high specificity of DNA-based self-assembly, we can precisely anchor proteins on these DNA origami nanostructures with sub-10 nm resolution and at the single-molecule level. We attach a pair of enzymes (horseradish peroxidase and glucose oxidase) at the inner side of DNA nanotubes and observe high coupling efficiency of enzyme cascade within this confined nanospace. Hence, DNA nanostructures with such unprecedented properties shed new light on the design of nanoscale bioreactors and nanomedicine and provide an artificial system for studying enzyme activities and cascade in highly organized and crowded cell-mimicking environments.

%d bloggers like this: